Al Atomic Number



Atomic Number of Aluminum Aluminum is a chemical element with atomic number 13 which means there are 13 protons and 13 electrons in the atomic structure. The chemical symbol for Aluminum is Al. Atomic Mass of Aluminum. Aluminum is a chemical element with symbol Al and atomic number 13. Classified as a post-transition metal, Aluminum is a solid at room temperature. Al: Atomic Number: 13: Atomic Weight:: Density: 2.7 g/cm 3: Melting Point: 660.32 °C: Boiling Point: 2519 °C: Thermal properties: Phase: Solid: Melting Point: 660.32 °C: Boiling Point: 2519 °C. Aluminum has the symbol Al. From the Latin word 'alumen' meaning 'alum'. The ancient Greeks and Romans used alum in medicine as an astringent, and in dyeing processes. Atomic Number = 13, Atomic Mass = 26.98, 13 protons, 13 electrons, 14 neutrons. First isolated by Hans Christian Oersted of Denmark in1825. Most common use.

The elements of the periodic table sorted by atomic number

click on any elements name for further chemical properties, environmental data or health effects.

This list contains the 118 elements of chemistry.

The chemical elements of
the periodic chart sorted by:
Atomic number

Name chemical element

Symbol
- Name alphabetically1HydrogenH
- Atomic number2HeliumHe
- Symbol3LithiumLi
- Atomic Mass4BerylliumBe
- Electronegativity5BoronB
- Density6CarbonC
- Melting point7NitrogenN
- Boiling point8OxygenO
- Vanderwaals radius9FluorineF
- Year of discovery10NeonNe
- Inventor surname11SodiumNa
- Elements in earthcrust12MagnesiumMg
- Elements in human body13AluminumAl
- Covalenz radius14SiliconSi
- Ionization energy15PhosphorusP

For chemistry students and teachers: The tabular chart on the right is arranged by Atomic number.

The first chemical element is Hydrogen and the last is Ununoctium.

Please note that the elements do not show their natural relation towards each other as in the Periodic system. There you can find the metals, semi-conductor(s), non-metal(s), inert noble gas(ses), Halogens, Lanthanoides, Actinoids (rare earth elements) and transition metals.

16SulfurS
17ChlorineCl
18ArgonAr
19PotassiumK
20CalciumCa
21ScandiumSc
22TitaniumTi
23VanadiumV
24ChromiumCr
25ManganeseMn
26IronFe
27CobaltCo
28NickelNi
29CopperCu
30ZincZn
31GalliumGa
32GermaniumGe
33ArsenicAs
34SeleniumSe
35BromineBr
36KryptonKr
37RubidiumRb
38StrontiumSr
39YttriumY
40ZirconiumZr
41NiobiumNb
42MolybdenumMo
43TechnetiumTc
44RutheniumRu
45RhodiumRh
46PalladiumPd
47SilverAg
48CadmiumCd
49IndiumIn
50TinSn
51AntimonySb
52TelluriumTe
53IodineI
54XenonXe
55CesiumCs
56BariumBa
57LanthanumLa
58CeriumCe
59PraseodymiumPr
60NeodymiumNd
61PromethiumPm
62SamariumSm
63EuropiumEu
64GadoliniumGd
65TerbiumTb
66DysprosiumDy
67HolmiumHo
68ErbiumEr
69ThuliumTm
70YtterbiumYb
71LutetiumLu
72HafniumHf
73TantalumTa
74TungstenW
75RheniumRe
76OsmiumOs
77IridiumIr
78PlatinumPt
79GoldAu
80MercuryHg
81ThalliumTl
82LeadPb
83BismuthBi
84PoloniumPo
85AstatineAt
86RadonRn
87FranciumFr
88RadiumRa
89ActiniumAc
90ThoriumTh
91ProtactiniumPa
92UraniumU
93NeptuniumNp
94PlutoniumPu
95AmericiumAm
96CuriumCm
97BerkeliumBk
98CaliforniumCf
99EinsteiniumEs
100FermiumFm
101MendeleviumMd
102NobeliumNo
103LawrenciumLr
104RutherfordiumRf
105DubniumDb
106SeaborgiumSg
107BohriumBh
108HassiumHs
109MeitneriumMt
110DarmstadtiumDs
111RoentgeniumRg
112CoperniciumCn
113NihoniumNh
114FleroviumFl
115MoscoviumMc
116LivermoriumLv
117TennessineTs
118OganessonOg

Click here: for a schematic overview of the periodic table of elements in chart form

Do you need to know the weight of some molecules? Try our Molecular Weight Calculator!

Please report any accidental mistake in the above statistics on chemical elements

Lenntech (European Head Office)

Distributieweg 3
2645 EG Delfgauw
The Netherlands
Phone: +31 152 610 900
fax: +31 152 616 289
e-mail: info@lenntech.com


Lenntech USA LLC (Americas)

5975 Sunset Drive
South Miami, FL 33143
USA
Phone: +1 877 453 8095
e-mail: info@lenntech.com


Lenntech DMCC (Middle East)

Level 5 - OFFICE #8-One JLT Tower
Jumeirah Lake Towers
Dubai - U.A.E.
Phone: +971 4 429 5853
e-mail: info@lenntech.com


Copyright © 1998-2021 Lenntech B.V. All rights reserved

Number

Effective atomic number has two different meanings: one that is the effective nuclear charge of an atom, and one that calculates the average atomic number for a compound or mixture of materials. Both are abbreviated Zeff.

For an atom[edit]

The effective atomic number Zeff, (sometimes referred to as the effective nuclear charge) of an atom is the number of protons that an electron in the element effectively 'sees' due to screening by inner-shell electrons. It is a measure of the electrostatic interaction between the negatively charged electrons and positively charged protons in the atom. One can view the electrons in an atom as being 'stacked' by energy outside the nucleus; the lowest energy electrons (such as the 1s and 2s electrons) occupy the space closest to the nucleus, and electrons of higher energy are located further from the nucleus.

The binding energy of an electron, or the energy needed to remove the electron from the atom, is a function of the electrostatic interaction between the negatively charged electrons and the positively charged nucleus. In iron, atomic number 26, for instance, the nucleus contains 26 protons. The electrons that are closest to the nucleus will 'see' nearly all of them. However, electrons further away are screened from the nucleus by other electrons in between, and feel less electrostatic interaction as a result. The 1s electron of iron (the closest one to the nucleus) sees an effective atomic number (number of protons) of 25. The reason why it is not 26 is because some of the electrons in the atom end up repelling the others, giving a net lower electrostatic interaction with the nucleus. One way of envisioning this effect is to imagine the 1s electron sitting on one side of the 26 protons in the nucleus, with another electron sitting on the other side; each electron will feel less than the attractive force of 26 protons because the other electron contributes a repelling force. The 4s electrons in iron, which are furthest from the nucleus, feel an effective atomic number of only 5.43 because of the 25 electrons in between it and the nucleus screening the charge.

Effective atomic numbers are useful not only in understanding why electrons further from the nucleus are so much more weakly bound than those closer to the nucleus, but also because they can tell us when to use simplified methods of calculating other properties and interactions. For instance, lithium, atomic number 3, has two electrons in the 1s shell and one in the 2s shell. Because the two 1s electrons screen the protons to give an effective atomic number for the 2s electron close to 1, we can treat this 2s valence electron with a hydrogenic model.

Al Atomic Number And Mass

Mathematically, the effective atomic number Zeff can be calculated using methods known as 'self-consistent field' calculations, but in simplified situations is just taken as the atomic number minus the number of electrons between the nucleus and the electron being considered.

For a compound or mixture[edit]

An alternative definition of the effective atomic number is one quite different from that described above. The atomic number of a material exhibits a strong and fundamental relationship with the nature of radiation interactions within that medium. There are numerous mathematical descriptions of different interaction processes that are dependent on the atomic number, Z. When dealing with composite media (i.e. a bulk material composed of more than one element), one therefore encounters the difficulty of defining Z. An effective atomic number in this context is equivalent to the atomic number but is used for compounds (e.g. water) and mixtures of different materials (such as tissue and bone). This is of most interest in terms of radiation interaction with composite materials. For bulk interaction properties, it can be useful to define an effective atomic number for a composite medium and, depending on the context, this may be done in different ways. Such methods include (i) a simple mass-weighted average, (ii) a power-law type method with some (very approximate) relationship to radiation interaction properties or (iii) methods involving calculation based on interaction cross sections. The latter is the most accurate approach (Taylor 2012), and the other more simplified approaches are often inaccurate even when used in a relative fashion for comparing materials.

In many textbooks and scientific publications, the following - simplistic and often dubious - sort of method is employed. One such proposed formula for the effective atomic number, Zeff, is as follows (Murty 1965):

Zeff=f1×(Z1)2.94+f2×(Z2)2.94+f3×(Z3)2.94+...2.94{displaystyle Z_{text{eff}}={sqrt[{2.94}]{f_{1}times (Z_{1})^{2.94}+f_{2}times (Z_{2})^{2.94}+f_{3}times (Z_{3})^{2.94}+...}}}
where
fn{displaystyle f_{n}} is the fraction of the total number of electrons associated with each element, and
Zn{displaystyle Z_{n}} is the atomic number of each element.

Aluminum Atomic Mass

Atomic

An example is that of water (H2O), made up of two hydrogen atoms (Z=1) and one oxygen atom (Z=8), the total number of electrons is 1+1+8 = 10, so the fraction of electrons for the two hydrogens is (2/10) and for the one oxygen is (8/10). So the Zeff for water is:

Zeff=0.2×12.94+0.8×82.942.94=7.42{displaystyle Z_{text{eff}}={sqrt[{2.94}]{0.2times 1^{2.94}+0.8times 8^{2.94}}}=7.42}

The effective atomic number is important for predicting how photons interact with a substance, as certain types of photon interactions depend on the atomic number. The exact formula, as well as the exponent 2.94, can depend on the energy range being used. As such, readers are reminded that this approach is of very limited applicability and may be quite misleading.

Chemical Symbol Al Atomic Number

This 'power law' method, while commonly employed, is of questionable appropriateness in contemporary scientific applications within the context of radiation interactions in heterogeneous media. This approach dates back to the late 1930s when photon sources were restricted to low-energy x-ray units (Mayneord 1937). The exponent of 2.94 relates to an empirical formula for the photoelectric process which incorporates a ‘constant’ of 2.64 x 10−26, which is in fact not a constant but rather a function of the photon energy. A linear relationship between Z2.94 has been shown for a limited number of compounds for low-energy x-rays, but within the same publication it is shown that many compounds do not lie on the same trendline (Spiers et al. 1946). As such, for polyenergetic photon sources (in particular, for applications such as radiotherapy), the effective atomic number varies significantly with energy (Taylor et al. 2008). As shown by Taylor et al. (2008), it is possible to obtain a much more accurate single-valued Zeff by weighting against the spectrum of the source. The effective atomic number for electron interactions may be calculated with a similar approach; see for instance Taylor et al. 2009 and Taylor 2011. The cross-section based approach for determining Zeff is obviously much more complicated than the simple power-law approach described above, and this is why freely-available software has been developed for such calculations (Taylor et al. 2012).

References[edit]

  • Eisberg and Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles.
  • Murty, R. C. (1965). 'Effective Atomic Numbers of Heterogeneous Materials'. Nature. 207 (4995): 398–399. Bibcode:1965Natur.207..398M. doi:10.1038/207398a0.
  • Mayneord, W. (1937). 'The significance of the Röntgen'. Unio Internationalis Contra Cancrum. 2: 271–282.
  • Spiers, W. (1946). 'Effective atomic number and energy absorption in tissues'. British Journal of Radiology. 19 (52–63): 52–63. doi:10.1259/0007-1285-19-218-52. PMID21015391.
  • Taylor, M. L.; Franich, R. D.; Trapp, J. V.; Johnston, P. N. (2008). 'The effective atomic number of dosimetric gels'. Australasian Physics & Engineering Sciences in Medicine. 31 (2): 131–138. doi:10.1007/BF03178587. PMID18697704.
  • Taylor, M. L.; Franich, R. D.; Trapp, J. V.; Johnston, P. N. (2009). 'Electron Interaction with Gel Dosimeters: Effective Atomic Numbers for Collisional, Radiative and Total Interaction Processes'(PDF). Radiation Research. 171 (1): 123–126. Bibcode:2009RadR..171..123T. doi:10.1667/RR1438.1. PMID19138053.
  • Taylor, M. L. (2011). 'Robust determination of effective atomic numbers for electron interactions with TLD-100 and TLD-100H thermoluminescent dosimeters'. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 269 (8): 770–773. Bibcode:2011NIMPB.269..770T. doi:10.1016/j.nimb.2011.02.010.
  • Taylor, M. L.; Smith, R. L.; Dossing, F.; Franich, R. D. (2012). 'Robust calculation of effective atomic numbers: The Auto-Zeffsoftware'. Medical Physics. 39 (4): 1769–1778. Bibcode:2012MedPh..39.1769T. doi:10.1118/1.3689810. PMID22482600.

See Full List On Atomicnumber.net

Retrieved from 'https://en.wikipedia.org/w/index.php?title=Effective_atomic_number&oldid=993917437'